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Abstract
We study a pair of commuting difference operators arising from the elliptic
solution of the dynamical Yang–Baxter equation of type C2. The operators act
on the space of meromorphic functions on the weight space of sp(4,C). We
show that these operators can be identified with the system by van Diejen and
by Komori–Hikami with special parameters. It turns out that our case can be
related to the difference Lamé operator (two-body Ruijsenaars operator) and
thereby we diagonalize the system on the finite-dimensional space spanned by
the level-one characters of the C(1)

2 -affine Lie algebra.

PACS number: 02.20.-a

1. Introduction

The Ruijsenaars system of difference operators [1] is a difference analogue of the Calogero–
Moser integrable system of differential operators. The operators of the system are defined in
terms of an elliptic function, and in the trigonometric limit, they degenerate to the Macdonald
q-difference operators [2]. The Ruijsenaars system has been studied extensively. In particular,
Hasegawa shows that this system can be obtained as transfer matrices associated with the
Sklyanin algebra [3] and Felder–Varchenko reconstructed them as transfer matrices associated
with the dynamical R-matrices [4]. These two approaches are related by the vertex–IRF
correspondence [5, 6].

Extending these works, in [7] we construct a pair of commuting difference operators acting
on the space of functions on the C2 type weight space. The method therein is based on the
elliptic solution of the dynamical Yang–Baxter equation of type C2 (or Boltzmann weights of
theC(1)

2 face model [8]). We have also shown that the space spanned by the level-one characters
of the affine Lie algebra ŝp(4,C) is invariant under the action of the difference operators.

On the other hand, a generalization of the Ruijsenaars system to the BCn case is studied
by van Diejen [9] and Komori–Hikami [10,11]. In addition to the step parameter of difference
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operator and the modulus of elliptic functions, the family contains nine arbitrary parameters.
Komori–Hikami’s construction can be regarded as an elliptic generalization of a Dunkl type
operator approach to Macdonald systems, which have been extensively used by Cherednik [12]
(see [13] for the BCn case).

This paper has two goals. One is to establish the relationship between our system of
difference operators and the van Diejen–Komori–Hikami system. The other is to diagonalize
our difference operators on the finite-dimensional space spanned by theta functions. The first
goal is attained in section 2 and second in section 3.

In section 2 we review the construction of the elliptic difference system of type C2 and
give a new form of our operators. After this, we will establish an identity consisting of theta
functions (lemma 1), and explain how our system can be identified with from the van Diejen–
Komori–Hikami system with special choice of parameters (theorem 2). That is, our approach
to the difference operators as transfer matrices, based on the knowledge of the Boltzmann
weights, reproduces a special case among the family of commuting operators obtained by the
Dunkl-type approach. It should be also mentioned that those two approaches to the system are
not yet related, although the resulting commuting operators have the relationship as above.

In section 3, we introduce the finite-dimensional space of theta functions invariant under
the action of the Weyl group and its basis after Kac–Peterson [14]. Our aim is to diagonalize our
operators on this space (theorem 4). This is an elliptic analogue of the eigenvalue problem of
Macdonald operators on the space of symmetric polynomials. Their eigenfunctions, called
Macdonald–Koornwinder polynomials, are much investigated in q-orthogonal polynomial
theory [13, 15].

2. The difference operators of type C2

2.1. Construction of the difference operators of type C2

Let g be the Lie algebra sp(4,C), h its Cartan subalgebra and h∗ the dual space of h. We
realize the root system R for (g, h) as R := {±(ε1 ± ε2),±2ε1,±2ε2} ⊂ h∗. A normalized
Killing form (, ) is given by

(εj , εk) = 1
2δjk (2.1)

and the square length of the long roots ±2εi is two. We will identify the space h and its dual
h∗ via the form (, ). The fundamental weights are given by �1 = ε1,�2 = ε1 + ε2. Let Pd be
the set of weights for the fundamental representation L(�d). We have

P1 = {±ε1,±ε2} P2 = {±(ε1 ± ε2), 0}. (2.2)

Let d, d ′ be 1 or 2. The C(1)
2 type Boltzmann weights of type (d, d ′) are given as follows.

Fix a complex parameter h̄ ∈ C. For any pair λ,µ, ν, κ ∈ h∗ of weights, the Boltzmann
weight

Wdd ′

(
λ µ

κ ν

∣∣∣∣ u)
is a function of the spectral parameter u ∈ C and λ ∈ h. They satisfy the condition

Wdd ′

(
λ µ

κ ν

∣∣∣∣ u) = 0 unless µ− λ ν − κ ∈ 2h̄Pd κ − λ ν − µ ∈ 2h̄Pd ′

and solve the Yang–Baxter equation of the face type,∑
η

Wdd ′

(
ρ η

σ κ

∣∣∣∣ u− v

)
Wdd ′′

(
λ µ

ρ η

∣∣∣∣ u− w

)
Wd ′d ′′

(
µ ν

η κ

∣∣∣∣ v − w

)
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=
∑
η

Wd ′d ′′

(
λ η

ρ σ

∣∣∣∣ v − w

)
Wdd ′′

(
η ν

σ κ

∣∣∣∣ u− w

)
×Wdd ′

(
λ µ

η ν

∣∣∣∣ u− v

)
. (2.3)

This equation is also known as the dynamical Yang–Baxter equation. Here we give the
explicit formula for W11 and see [7] for the other type Wdd ′ ((d, d ′) = (1, 2), (2, 1), (2, 2))
which are obtained by a fusion procedure. They are expressed by the Jacobi theta function
θ1(u) = θ1(u|τ) with elliptic modulus τ in the upper half plane H+ (see appendix B for the
definition of θ1(u)). For p, q, r, s ∈ P such that p + q = r + s, we will write

p

s u q

r

= W11

(
λ λ + 2h̄p

λ + 2h̄s λ + 2h̄(p + q)

∣∣∣∣ u).
The explicit formula for W11 is given as follows:

p

p u p

p

= θ1(c − u) θ1(u + h̄)

θ1(c) θ1(h̄)
(2.4)

p

p u q

q

= θ1(c − u) θ1(λp−q − u)

θ1(c) θ1(λp−q)
(p �= ±q) (2.5)

q

p u p

q

= θ1(c − u) θ1(u) θ1(λp−q + h̄)

θ1(c) θ1(h̄) θ1(λp−q)
(p �= ±q) (2.6)

q

p u −q
−p

= −θ1(u) θ1(λp+q + h̄ + c − u)

θ1(c) θ1(λp+q + h̄)

θ1(2λp + 2h̄)

θ1(2λq)

∏
r �=±p θ1(λp+r + h̄)∏
r �=±q θ1(λq+r )

(p �= q)

(2.7)
p

p u −p
−p

= θ1(c − u) θ1(2λp + h̄− u)

θ1(c) θ1(2λp + h̄)

−θ1(u) θ1(2λp + h̄ + c − u)

θ1(c) θ1(2λp + h̄)

θ1(2λp + 2h̄)

θ1(2λp)

∏
q �=±p

θ1(λp+q + h̄)

θ1(λp+q)
. (2.8)

Here the crossing parameter c is fixed to be c := −3h̄.
We define the difference operators Md(u) (u ∈ C, d = 1, 2) acting on the functions on h

by means of the Boltzmann weights of type (1, 2) and (2, 2):

(Md(u)f )(λ) :=
∑
p∈Pd

Wd2

(
λ λ + 2h̄p
λ λ + 2h̄p

∣∣∣∣ u) T h̄
2pf (λ).

Here the shift operator T h̄
2p is defined as

T h̄
2pf (λ) := f (λ + 2h̄p ).

For λ ∈ h∗ and p ∈ Pd (d = 1, 2), we put

λp := (λ, p).

Note that if we denote λi = (λ, εi) (i = 1, 2) and f (λ) = f (λ1, λ2), then

T h̄
±2ε1

f (λ1, λ2) = f (λ1 ± h̄, λ2) T h̄
±2ε2

f (λ1, λ2) = f (λ1, λ2 ± h̄).
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Theorem 1 ([7]).

(i) For each u, v ∈ C, we have Md(u)Md ′(v) = Md ′(v)Md(u) (d, d
′ = 1, 2).

(ii) The explicit form of Md(u) are as follows:

M1(u) = F(u)
∑
p∈P1

∏
q∈P1
q �=±p

θ1(λp+q − h̄)

θ1(λp+q)
T h̄

2p (2.9)

M2(u) = G(u)

∑
p=±ε1
q=±ε2

(
θ1(λp+q − h̄)

θ1(λp+q + h̄)
T h̄

2pT
h̄

2q + U(λp, λq)

)
−H(u)

 . (2.10)

Here U(λp, λq) is given by

U(λp, λq) = θ1(2h̄)

θ1(6h̄)

θ1(2λp + 2h̄) θ1(2λq + 2h̄)

θ1(2λp) θ1(2λq)

θ1(λp+q − 5h̄) θ1(λp+q + 2h̄)

θ1(λp+q) θ1(λp+q + h̄)

and F(u),G(u),H(u) are the following functions depending only on u and h̄:

F(u) := θ1(u) θ1(u + 2h̄)2 θ1(u + 4h̄)

θ1(−3h̄)2 θ1(h̄)2

G(u) := θ1(u− h̄) θ1(u)
2 θ1(u + h̄) θ1(u + 2h̄) θ1(u + 3h̄)2 θ1(u + 4h̄)

θ1(−3h̄)4 θ1(h̄)4

and

H(u) := θ1(u + 6h̄) θ1(u− 3h̄) θ1(2h̄)

θ1(u) θ1(u + 3h̄) θ1(6h̄)
.

The following lemma is the key for the identification with van Diejen’s system as well as
for the diagonalization of our difference operators. The author is grateful to van Diejen for the
information.

Lemma 1. We have∑
p=±ε1
q=±ε2

U(λp, λq)−
∑
p=±ε1
q=±ε2

θ1(λp+q − h̄) θ1(λp+q + 2h̄)

θ1(λp+q) θ1(λp+q + h̄)
= K (2.11)

where K is a constant given by

K = θ1(8h̄) θ1(h̄)

θ1(6h̄) θ1(5h̄)
+
θ1(5h̄) θ1(2h̄)

θ1(4h̄) θ1(3h̄)
+
θ1(6h̄) θ1(3h̄)

θ1(5h̄) θ1(4h̄)
+
θ1(4h̄) θ1(h̄)

θ1(3h̄) θ1(2h̄)
.

Proof. Let f (λp) be the left-hand side of (2.11), regarded as a function of λp (p ∈ I ). It is a
doubly periodic function of the periods 1, τ . Let us show that it is entire. The apparent poles
of f (λp) are located at

λp = λq λp = λq − h̄(p, q ∈ I, p + q �= 0) λp = 0 (p ∈ I ).

Note that f (λp) is W -invariant, then the points λp = λq and λp = 0 are regular. Also, the
residue of f (λp) at λp = −λq − h̄ is

θ1(2h̄)

θ1(6h̄)

θ1(−2λq) θ1(2λq + 2h̄)

θ1(−2λq − 2h̄) θ1(2λq)

θ1(−6h̄) θ1(h̄)

θ1(−h̄) − θ1(−2h) θ1(h̄)

θ1(−h̄) = 0.
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Now we have proved that f (λp) is independent of λp, then we consider g(λq) =
f (−λq − 2h̄) as a function of λq (q �= p ∈ I ):

g(λq) = θ1(2h̄)

θ1(6h̄)

(
θ1(2λq + 2h̄) θ1(2λq − 2h̄) θ1(2λq + 7h̄)

θ1(2λq + 4h̄) θ1(2λq + 2h̄) θ1(2λq + h̄)

+
θ1(2λq + 6h̄) θ1(2λq + 2h̄) θ1(2λq − 3h̄)

θ1(2λq) θ1(2λq + 2h̄) θ1(2λq + 3h̄)

+
θ1(2λq + 6h̄) θ1(2λq − 2h̄) θ1(−3h̄) θ1(4h̄)

θ1(2λq + 4h̄) θ1(2λq) θ1(2h̄) θ1(3h̄)

)
− θ1(−2λq − 3h̄) θ1(−2λq)

θ1(−2λq − 2h̄) θ1(−2λq − h̄)

− θ1(2λq + h̄) θ1(2λq + 4h̄)

θ1(2λq + 2h̄) θ1(2λq + 3h̄)
− θ1(h̄) θ1(4h̄)

θ1(2h̄) θ1(3h̄)
.

By the same argument we can show that g(λq) is independent of λq . Therefore we get K by
putting λq = h̄ in g(λq) and the proof is complete. �

2.2. Identification with van Diejen’s system

We define the difference operators M̃d to be the components of Md(u) independent of u:

M̃1 =
∑
p∈P1

∏
q∈P1
q �=±p

θ1(λp+q − h̄)

θ1(λp+q)
T h̄

2p (2.12)

M̃2 =
∑
p=±ε1
q=±ε2

(
θ1(λp+q − h̄)

θ1(λp+q + h̄)
T h̄

2pT
h̄

2q +
θ1(λp+q − h̄) θ1(λp+q + 2h̄)

θ1(λp+q) θ1(λp+q + h̄)

)
. (2.13)

More general commuting difference operators H1,H2 were obtained by van Diejen and
later by Komori–Hikami in a different way. In this section we identify our operators M̃1, M̃2

as van Diejen’s system of difference operators with special parameter values. The operators
H1,H2 depend on nine complex parametersµ,µr, µ′

r (r = 0, 1, 2, 3) satisfying the condition∑
r

(µr + µ′
r ) = 0 (2.14)

and are defined by

H1 =
∑
ε=±1

w(εx1)v(εx1 + x2)v(εx1 − x2)T
γ

ε1

+
∑
ε=±1

w(εx2)v(εx2 + x1)v(εx2 − x1)T
γ

ε2 + U{1,2},1

H2 =
∑

ε,ε′=±1

w(εx1)w(ε
′x2)v(εx1 + ε′x2)v(εx1 + ε′x2 + γ )T γ

ε1T
γ

ε′2

+U{2},1
∑
ε=±1

w(εx1)v(εx1 + x2)v(εx1 − x2)T
γ

ε1

+U{1},1
∑
ε=±1

w(εx2)v(εx2 + x1)v(εx2 − x1)T
γ

ε2 + U{1,2},2.

Here T γ

±i (i = 1, 2) stand for the shift operators

T
γ

±1f (x1, x2) = f (x1 ± γ, x2) T
γ

±2f (x1, x2) = f (x1, x2 ± γ )
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and

v(z) := σ(z + µ)

σ(z)
w(z) :=

∏
0�r�3

σr(z + µr) σr(z + µ′
r + γ /2)

σr(z) σr(z + γ /2)
(2.15)

where σ(z) = σ0(z) denotes the sigma function with two quasi-periods 2ω1, 2ω2 and
σr(z) (r = 1, 2, 3) associated function obtained by shift of argument over the half periods (see
appendix B for more detail). The functions U{j},1, U{1,2},j (j = 1, 2) are defined as follows:

U{j},1 = −w(xj )− w(−xj ) (j = 1, 2)

U{1,2},1 =
∑

0�r�3

cr
∏
j=1,2

σr(µ− γ /2 + xj ) σr(µ− γ /2 − xj )

σr(−γ /2 + xj ) σr(−γ /2 − xj )

where

cr = 2

σ(µ) σ(µ− γ )

∏
0�s�3

σs(µπr (s) − γ /2) σs(µ
′
πr (s)

)

with πr denoting the permutation π0 = id, π1 = (01)(23), π2 = (02)(13), π3 = (03)(12).

U{1,2},2 =
∑

ε,ε′∈{1,−1}
w(εx1)w(ε

′x2)v(εx1 + ε′x2)v(−εx1 − ε′x2 − γ ). (2.16)

We mention that the Komori–Hikami system in [11] is of more complicated form and has
nine arbitrary parameters, that is, they removed the condition (2.14).

In H1,H2, we specialize parametersµ,µr, µ′
r (r = 0, 1, 2, 3) asµ = −γ, µr = µ′

r = 0.
Then w(z) = 1 and U{1,2},1 = 0. Let us denote these specialized operators by H̄1, H̄2.
Because of these simplifications, we immediately obtain the following from lemma 1, giving
the identification of our system {M̃1, M̃2} and van Diejen’s {H̄1, H̄2}.
Theorem 2. For a function f (λ1, λ2) on h, we set ϕ(f )(x1, x2) by

ϕ(f )(x1, x2) := exp
η1(x

2
1 + x2

2 )

ω1
f

(
x1

2ω1
,
x2

2ω1

)
and let γ = 2ω1h̄, we have

ϕ M̃1 ϕ
−1 = e2η1γ

2/ω1 H̄1

ϕ M̃2 ϕ
−1 = e2η1γ

2/ω1
(H̄2 + 2H̄1

)
.

Proof. Use the connection between the theta function and sigma function (B.8) in appendix B
and (2.11) to compare (2.10) and (2.16). �

3. Diagonalization of the system

3.1. The space of theta functions

Let Q and Q∨ be the root and coroot lattice, P and P ∨ the weight and coweight lattice
respectively. Under the identification h = h∗ via the form (, ), they are given by

P =
∑
j=1,2

Zεj Q∨ =
∑
j=1,2

Z2εj (3.1)

and

P ∨ = Q = Z2ε1 + Z2ε2 + Z(ε1 + ε2).
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For β ∈ h∗, we introduce the following operators Tτβ, Tβ acting on the functions on h∗:

(Tβf )(λ) := f (λ + β)

(Tτβf )(λ) := exp

[
2π i

(
(λ, β) +

(β, β)

2
τ

)]
f (λ + τβ).

We define the space of theta functions (of level 1) by

T h1 := {
f is holomorphic on h∗|Tταf = Tαf = f (∀α ∈ Q∨)

}
.

For each µ ∈ P and fixed τ ∈ H+, we define the classical theta function 9µ(λ) of λ ∈ h∗ by

9µ(λ) :=
∑

γ∈µ+Q∨
exp

[
2π i

(
(γ, λ) +

(γ, γ )

2
τ

)]
.

It is known that

{9µ(λ)|µ ≡ 0, ε1, ε2, ε1 + ε2 modQ∨}
gives a basis for T h1 over C [14].

LetW ⊂ GL(h∗) denote the Weyl group for (g, h), and consider theW -invariants in T h1:

T hW1 := {f ∈ T h1|f (wλ) = f (λ) (∀w ∈ W)} .
Theorem 3 ([7]). The operators M̃1, M̃2 preserves T hW1 .

For µ ∈ P , we defineWµ := {w ∈ W | wµ = µ} and introduce the following symmetric sum
of theta functions:

Sµ(λ) := 1

|Wµ|
∑
w∈W

9w(µ)(λ).

Then

{Sµ(λ) | µ ≡ 0, �1 (= ε1), �2 (= ε1 + ε2) modQ∨}
forms a basis for T hW1 over C.

It is known that T hW1 is also spanned by the level-1 characters of the affine Lie algebra
ŝp(4,C). Note that 9−µ(λ) = 9µ(λ) and 9ε1+ε2(λ) = 9ε1−ε2(λ). So that we have

S0(λ) = 90(λ) S�1(λ) = 2(9ε1(λ) + 9ε2(λ)) S�2(λ) = 49ε1+ε2(λ).

3.2. Diagonalization of M̃d

In this section, we diagonalize the operators M̃d on the space T hW1 .
We set

f1(λ) := 9ε1(λ) + 9ε2(λ)

f2(λ) := 90(λ) + 9ε1+ε2(λ)

f3(λ) := 90(λ)−9ε1+ε2(λ).

They are linearly independent in the space T hW1 .

Theorem 4. The functions fi(λ) (i = 1, 2, 3) are common eigenfunctions of M̃d :

M̃dfi(λ) = Ed,ifi(λ) (d = 1, 2, i = 1, 2, 3).

The eigenvalues are given by

E1,i =
(
θ1(2h̄)θi+1(0)

θ1(h̄)θi+1(h̄)

)2

and E2,i = 2E1,i , where the Jacobi theta functions θi(z) = θi(z|τ) (i = 2, 3, 4) are defined
as in appendix B.
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We will prove this theorem by using the following three lemmas. First, we show that the
operators M̃d split into two A1-type components.

Lemma 2. Let us denote λ± := (λ, ε1 ± ε2) and define

H± := θ1(λ± − h̄)

θ1(λ±)
T h̄
ε1±ε2

+
θ1(−λ± − h̄)

θ1(−λ±)
T h̄

−(ε1±ε2)
.

Then we have

M̃1 = H+H− M̃2 = H 2
+ + H 2

−. (3.2)

Proof. To prove the first identity, we note that

θ1(λ+ − h̄)

θ1(λ+)
T h̄
ε1+ε2

θ1(λ− − h̄)

θ1(λ−)
T h̄
ε1−ε2

= θ1(λ+ − h̄)

θ1(λ+)

θ1((λ + h̄(ε1 + ε2))− − h̄)

θ1((λ + h̄(ε1 + ε2))−)
T h̄
ε1+ε2

T h̄
ε1−ε2

= θ1(λ+ − h̄)

θ1(λ+)

θ1(λ− − h̄)

θ1(λ−)
T h̄

2ε1
.

Here we used the identity (ε1 +ε2, ε1 −ε2) = 0. The second identity follows from, for instance,

θ1(λ+ − h̄)

θ1(λ+)
T h̄
ε1+ε2

θ1(λ+ − h̄)

θ1(λ+)
T h̄
ε1+ε2

= θ1(λ+ − h̄)

θ1(λ+)

θ1((λ + h̄(ε1 + ε2))+ − h̄)

θ1((λ + h̄(ε1 + ε2))+)
T h̄
ε1+ε2

T h̄
ε1+ε2

= θ1(λ+ − h̄)

θ1(λ+)

θ1(λ+ + h̄− h̄)

θ1(λ+ + h̄)
T h̄

2(ε1+ε2)

= θ1(λ+ − h̄)

θ1(λ+ + h̄)
T h̄

2ε1
T h̄

2ε2
.

Here we used the identity (ε1 + ε2, ε1 + ε2) = 1. �
Second, we consider the eigenvalue problem for the A1-type difference operator

(difference Lamé or two-body Ruijsenaars operator)

θ1(z− =h̄)

θ1(z)
f (z + h̄) +

θ1(z + =h̄)

θ1(z)
f (z− h̄) = Ef (z). (3.3)

Lemma 3. For the special coupling constant = = 1, the functions

θi(z) (i = 2, 3, 4)

are solutions of equation (3.3) with eigenvalues

E = Ei = θ1(2h̄) θi(0)

θ1(h̄) θi(h̄)
(i = 2, 3, 4).

Proof. We note that the functions θ2(z), θ3(z), and θ4(z) can be rewritten in eczθ1(z + t) up to
a constant, where

(t, c) = (
1
2 , 0

) (
1 + τ

2
, π i

)
and

(τ
2
, π i

)
(3.4)

respectively (see the formula (B.3) in appendix B). Let (t, c) be one of these, and we denote
by g(z) the function which obtained by the action of theA1-type difference operator (3.3) with
= = 1 to eczθ1(z + t):

g(z) := θ1(z− h̄) θ1(z + t + h̄)

θ1(z)
ec(z+h̄) +

θ1(z + h̄) θ1(z + t − h̄)

θ1(z)
ec(z−h̄).

This is holomorphic and doubly quasi-periodic function:

g(z + 1) = −ecg(z) g(z + τ) = −eπ iτ−2π i(z+t)+cτ g(z).
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Moreover, g(z) = 0 at z = −t . Therefore, g(z) is equal to eczθ1(z + t) up to a constant, which
is the value of

θ1(z− h̄) θ1(z + t + h̄)

θ1(z) θ1(z + t)
ech̄ +

θ1(z + h̄) θ1(z + t − h̄)

θ1(z) θ1(z + t)
e−ch̄ (3.5)

at any chosen point. If we choose z = h̄, then the first term in (3.5) vanishes and we have
θ1(2h̄) θ1(t)

θ1(h̄) θ1(h̄ + t)
e−ch̄ = θ1(2h̄) θi(0)

θ1(h̄) θi(h̄)

where i = 2, 3 and 4 corresponding to the values of (t, c) in (3.4), as an eigenvalue. �
Remark. This can be regarded as a special case of Felder–Varchenko’s study [16]. They
expressed the solutions of (3.3) in terms of the algebraic Bethe ansatz method, which is
originally developed and applied to the spin chain model. In fact, the operator in the left-hand
side of (3.3) can be regarded as the transfer matrix of the simplest spin chain, that is, it consists
of only one site of freedom with spin = = 1. In this case, the Bethe ansatz equation

θ1(t − h̄)

θ1(t + h̄)
= e2h̄c (3.6)

is exactly the same as the condition in function (3.5) but does not have a pole at z = −t .
Because of lemma 3, the product of the theta functions

θi(λ+)θj (λ−) (i, j = 2, 3, 4)

are simultaneous eigenfunctions of the operators H 2
+ , H

2
− and H+H− with eigenvalues

θ1(2h̄)2 θi(0)2

θ1(h̄)2 θi(h̄)2

θ1(2h̄)2 θj (0)2

θ1(h̄)2 θj (h̄)2
and

θ1(2h̄)2 θi(0) θj (0)

θ1(h̄)2 θi(h̄) θj (h̄)

respectively. Finally, we shall establish the relationship of these Bethe ansatz solutions and
the bases of T hW1 .

Lemma 4. The functions fi(λ) ∈ T hW1 are expressed in terms of the Jacobi theta functions as
follows:

f1(λ) = θ2(λ+)θ2(λ−) f2(λ) = θ3(λ+)θ3(λ−) f3(λ) = θ4(λ+)θ4(λ−).
Proof. Because of the definitions of coroot lattice Q∨ (3.1) and Killing form (2.1), each basis
of T h1 is expressed as

90(λ) = θ3(2λ1|2τ)θ3(2λ2|2τ)
9ε1(λ) = θ3(2λ1|2τ)θ2(2λ2|2τ)
9ε2(λ) = θ2(2λ1|2τ)θ3(2λ2|2τ)
9ε1+ε2(λ) = θ2(2λ1|2τ)θ2(2λ2|2τ).

Here λi = λεi (i = 1, 2). Therefore we can prove this lemma by using the identities of theta
functions (addition theorems) (B.4)–(B.7) in the appendix. �

We note that the anti-symmetric function 9ε1(λ) − 9ε2(λ) = θ1(λ+)θ1(λ−) is also the
eigenfunction with eigenvalue zero.
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Appendix A. Differential limit

Let us clarify the connection between our system of difference operators and a quantization of
the Inozemtsev Hamiltonian [17, 18]. By expanding in h̄ one infers that

M̃1 = 4 + M1,2h̄
2 + M1,4h̄

4 + O(h̄5)

M̃2 = 8 + M2,2h̄
2 + M2,4h̄

4 + O(h̄5).

If we abbreviate a function f (λε1±ε2) as f (±), ∂i = ∂
∂λi

(i = 1, 2), and θ ′
1(z) = d

dz θ1(z) etc.
We have

M1,2 = ∂2
1 + ∂2

2 − 2

(
θ ′

1

θ1
(+) +

θ ′
1

θ1
(−)

)
∂1 − 2

(
θ ′

1

θ1
(+)− θ ′

1

θ1
(−)

)
∂2

+2

(
θ ′′

1

θ1
(+) +

θ ′′
1

θ1
(−)

)
M2,2 = 2M1,2

and

M2,4 − 2M1,4 = ∂2
1∂

2
2

−2

(
θ ′

1

θ1
(+)− θ ′

1

θ1
(−)

)
∂2

1∂2 − 2

(
θ ′

1

θ1
(+) +

θ ′
1

θ1
(−)

)
∂1∂

2
2

+

{
2

((
θ ′

1

θ1

)2

(+) +

(
θ ′

1

θ1

)2

(−)
)

−
(
θ ′′

1

θ1
(+) + 2

θ ′
1

θ1
(+)

θ ′
1

θ1
(−) +

θ ′′
1

θ1
(−)

)}
∂2

1

+

{
2

((
θ ′

1

θ1

)2

(+) +

(
θ ′

1

θ1

)2

(−)
)

−
(
θ ′′

1

θ1
(+)− 2

θ ′
1

θ1
(+)

θ ′
1

θ1
(−) +

θ ′′
1

θ1
(−)

)}
∂2

2

+4

((
θ ′

1

θ1

)2

(+)−
(
θ ′

1

θ1

)2

(−)
)
∂1∂2

+

{
2

(
θ ′

1θ
′′
1

θ2
1

(+) +
θ ′

1θ
′′
1

θ2
1

(−)
)

+ 2

(
θ ′′

1

θ1
(+)

θ ′
1

θ1
(−) +

θ ′
1

θ1
(+)

θ ′′
1

θ1
(−)

)
− 4

((
θ ′

1

θ1

)3

(+) +

(
θ ′

1

θ1

)3

(−)
)}

∂1

+

{
2

(
θ ′

1θ
′′
1

θ2
1

(+)− θ ′
1θ

′′
1

θ2
1

(−)
)

− 2

(
θ ′′

1

θ1
(+)

θ ′
1

θ1
(−)− θ ′

1

θ1
(+)

θ ′′
1

θ1
(−)

)
− 4

((
θ ′

1

θ1

)3

(+)−
(
θ ′

1

θ1

)3

(−)
)}

∂2

+
1

2

(
θ
(4)
1

θ1
(+) +

θ
(4)
1

θ1
(−)

)
− 4

(
θ ′′′

1 θ
′
1

θ2
1

(+) +
θ ′′′

1 θ
′
1

θ2
1

(−)
)

+2

(
θ ′′

1 θ
′
1

2

θ3
1

(+) +
θ ′′

1 θ
′
1

2

θ3
1

(−)
)

− 2
θ ′′

1

θ1
(+)

θ ′′
1

θ1
(−).

We set @ = θ1(+)θ1(−), then

@−1 ·M2,2 ·@ = ∂2
1 + ∂2

2 + 4

((
θ ′′

1

θ1
− θ ′

1
2

θ2
1

)
(+) +

(
θ ′′

1

θ1
− θ ′

1
2

θ2
1

)
(−)

)
= ∂2

1 + ∂2
2 + 4

(
(log θ1)

′′(+) + (log θ1)
′′(−)) (A.1)
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@−1 · (M2,4 − 2M1,4) ·@ = ∂2
1∂

2
2

+4

((
θ ′′

1

θ1
+
θ ′

1
2

θ2
1

)
(+)−

(
θ ′′

1

θ1
+
θ ′

1
2

θ2
1

)
(−)

)
∂1∂2

+2

((
θ ′′′

1

θ1
− 3

θ ′′
1 θ

′
1

θ2
1

+ 2
θ ′

1
3

θ3
1

)
(+) +

(
θ ′′′

1

θ1
− 3

θ ′′
1 θ

′
1

θ2
1

+ 2
θ ′

1
3

θ3
1

)
(−)

)
∂1

+2

((
θ ′′′

1

θ1
− 3

θ ′′
1 θ

′
1

θ2
1

+ 2
θ ′

1
3

θ3
1

)
(+)−

(
θ ′′′

1

θ1
− 3

θ ′′
1 θ

′
1

θ2
1

+ 2
θ ′

1
3

θ3
1

)
(−)

)
∂2

+2

(
θ
(4)
1

θ1
(+) +

θ
(4)
1

θ1
(−)

)
− 8

(
θ ′′′

1 θ
′
1

θ2
1

(+) +
θ ′′′

1 θ
′
1

θ2
1

(−)
)

−2

((
θ ′′

1

θ1

)2

(+) +

(
θ ′′

1

θ1

)2

(−)
)

− 8
θ ′′

1

θ1
(+)

θ ′′
1

θ1
(−)

+16

(
θ ′′

1 θ
′
1

2

θ3
1

(+) +
θ ′′

1 θ
′
1

2

θ3
1

(−)
)

+ 8

(
θ ′

1
2

θ2
1

(+)
θ ′′

1

θ1
(−) +

θ ′′
1

θ1
(+)

θ ′
1

2

θ2
1

(−)
)

−8

((
θ ′

1

θ1

)4

(+) +

(
θ ′

1

θ1

)4

(−)
)

+ 8

(
θ ′

1

θ1

)2

(+)

(
θ ′

1

θ1

)2

(−)

= ∂2
1∂

2
2

+4{(log θ1)
′′(+)− (log θ1)

′′(−)}∂1∂2

+2
{
(log θ1)

′′′(+) + (log θ1)
′′′(−)} ∂1 + 2{(log θ1)

′′′(+)− (log θ1)
′′′(−)}∂2

+2{(log θ1)
(4)(+) + (log θ1)

(4)(−)}
+4{(log θ1)

′′(+)− (log θ1)
′′(−)}2

= {
∂1∂2 + 2

(
(log θ1)

′′(+)− (log θ1)
′′(−))}2

.

The complete integrable Hamiltonian of type BCn is introduced by Olshanetsky–
Perelomov [19], and later generated by Inozemtsev–Meshcheryakov [17, 18]. In the rank
two case, the Hamiltonian is

H = − 1
2 (∂

2
1 + ∂2

2 ) + g(g − 1) (℘ (x1 + x2) + ℘(x1 − x2))

+
∑

0�r�3

gr(gr − 1)(℘ (ωr + x1) + ℘(ωr + x2))

where ℘(x) denotes the Weierstrass ℘-function with two periods 2ω1 and 2ω2, and ω0 =
0, ω3 = −ω1 − ω2. By the connection between theta function and ℘ function (B.9) in
appendix B, our differential limit (A.1) is identified with this Hamiltonian for the special
coupling constants g(g − 1) = 2, and gr(gr − 1) = 0 (0 � r � 3).

Appendix B. Theta function

We establish notations and identities on the theta functions [20]. The Jacobi theta functions
are defined for τ ∈ H+ as follows:

θ1(z|τ) =
∑
k∈Z

exp[2π i((z + 1
2 )(k + 1

2 ) + 1
2 (k + 1

2 )
2τ)]

θ2(z|τ) =
∑
k∈Z

exp[2π i(z(k + 1
2 ) + 1

2 (k + 1
2 )

2τ)]
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θ3(z|τ) =
∑
k∈Z

exp

[
2π i

(
zk +

k2

2
τ

)]
θ4(z|τ) =

∑
k∈Z

exp

[
2π i

((
z +

1

2

)
k +

k2

2
τ

)]
.

Note that θ1(z) is odd and the other three are even. These functions has quasi-periodicity:

θ1(z + m|τ) = (−1)mθ1(z|τ) (B.1)

θ1(z + mτ |τ) = (−1)me−π im2τ−2π imzθ1(z|τ) (B.2)

(m ∈ Z), while other three can be expressed by θ1(z)

θ1(z + 1
2 |τ) = θ2(z|τ)

θ1

(
z +

τ

2

∣∣∣∣τ) = ie−π i(z+ τ
4 )θ4(z|τ)

θ1

(
z +

1

2
+
τ

2

∣∣∣∣τ) = e−π i(z+ τ
4 )θ3(z|τ).

(B.3)

We use these identities in the computations in lemma 4:

θ4(x|τ)θ4(y|τ) = θ3(x + y|2τ)θ3(x − y|2τ)− θ2(x + y|2τ)θ2(x − y|2τ) (B.4)

θ3(x|τ)θ3(y|τ) = θ3(x + y|2τ)θ3(x − y|2τ) + θ2(x + y|2τ)θ2(x − y|2τ) (B.5)

θ2(x|τ)θ2(y|τ) = θ3(x + y|2τ)θ2(x − y|2τ) + θ2(x + y|2τ)θ3(x − y|2τ) (B.6)

θ1(x|τ)θ1(y|τ) = θ3(x + y|2τ)θ2(x − y|2τ)− θ2(x + y|2τ)θ3(x − y|2τ). (B.7)

The sigma function σ(z) is an entire, odd, and quasi-periodic function with two primitive
quasi-periods 2ω1, 2ω2.

σ(z + 2nω1 + 2mω2) = (−1)n+m+nme(2nη1+2mη2)(z+nω1+mω2)σ (z)

with ηi = ζ(ωi) (i = 1, 2), where ζ(z) = σ ′(z)/σ (z) denotes the Weierstrass ζ -function. The
connection between the Jacobi theta functions and the sigma functions are

σ(z) =
(

exp
η1z

2

2ω1

)
θ1(z/2ω1)

θ ′
1(0)

σr(z) =
(

exp
η1z

2

2ω1

)
θr+1(z/2ω1)

θr+1(0)
(r = 1, 2, 3).

Then, for the function v(z) in van Diejen’s system (2.15), we have

v(z) := σ(z + µ)

σ(z)
=
(

exp
η1(2zµ + µ2)

2ω1

)
θ1((z + µ)/2ω1)

θ1(z/2ω1)
. (B.8)

The connection with the ℘ function is

℘(z) = − d2

dz2
log σ(z) = − 1

4ω2
1

(
d2

dz2
log θ1(z/2ω1)

)
− η1

ω1
. (B.9)

References

[1] Ruijsenaars S N M 1987 Complete integrability of relativistic Calogero–Moser systems and elliptic function
identities Commun. Math. Phys. 110 191–213

[2] Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (Oxford: Oxford University Press)
[3] Hasegawa K 1997 ‘Ruijsenaars’ commuting difference operators as commuting transfer matrices Commun.

Math. Phys. 187 289–325



Diagonalization of the elliptic Macdonald–Ruijsenaars difference system of type C2 5401

[4] Felder G and Varchenko A 1997 Elliptic quantum groups and Ruijsenaars models J. Stat. Phys. 89 963–80
[5] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain Ann.

Phys., NY 76 1–24
Baxter R J 1973 Ann. Phys., NY 76 25–47
Baxter R J 1973 Ann. Phys., NY 76 48–71

[6] Jimbo M, Miwa T and Okado M 1988 Local state probabilities of solvable lattice models: An A(1)n family Nucl.
Phys. B 300 74–108

[7] Hasegawa K, Ikeda T and Kikuchi T 1999 Commuting difference operators arising from the elliptic C(1)
2 -face

model J. Math. Phys. 40 4549–68
[8] Jimbo M, Miwa T and Okado M 1988 Solvable lattice models related to the vector representation of classical

simple Lie algebras Commun. Math. Phys. 116 507–25
[9] van Diejen J F 1994 Integrability of difference Calogero–Moser systems J. Math. Phys. 35 2983–3004

[10] Komori Y and Hikami K 1977 Quantum integrability of the generalized elliptic Ruijsenaars models J. Phys. A:
Math. Gen. 30 4341–64

[11] Komori Y and Hikami K 1998 Conserved operators of the generalized elliptic Ruijsenaars models J. Math. Phys.
39 6175–90

[12] Cherednik I 1995 Double affine Hecke algebras and Macdonald’s conjectures Ann. Math. 141 191–216
[13] Noumi M 1995 Macdonald–Koornwinder polynomials and affine Hecke rings (Japanese) Various aspects of

hypergeometric functions (Japanese) (Kyoto, 1994). Sūrikaisekikenkyūsho Kōkyūroku No 919 pp 44–55
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